Van Driest SL, Wells QS, Stallings S, Bush WS, Gordon A, Nickerson DA, Kim JH, Crosslin DR, Jarvik GP, Carrell DS, Ralston JD, Larson EB, Bielinski SJ, Olson JE, Ye Z, Kullo IJ, Abul-Husn NS, Scott SA, Bottinger E, Almoguera B, Connolly J, Chiavacci R, Hakonarson H, Rasmussen-Torvik LJ, Pan V, Persell SD, Smith M, […]
Tag Archives: Aged, 80 and over
Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records.
Large-scale DNA sequencing identifies incidental rare variants in established Mendelian disease genes, but the frequency of related clinical phenotypes in unselected patient populations is not well established. Phenotype data from electronic medical records (EMRs) may provide a resource to assess the clinical relevance of rare variants.To determine the clinical phenotypes from EMRs for individuals with […]
Automated extraction of clinical traits of multiple sclerosis in electronic medical records.
The clinical course of multiple sclerosis (MS) is highly variable, and research data collection is costly and time consuming. We evaluated natural language processing techniques applied to electronic medical records (EMR) to identify MS patients and the key clinical traits of their disease course.We used four algorithms based on ICD-9 codes, text keywords, and medications […]
Automated extraction of clinical traits of multiple sclerosis in electronic medical records.
Davis MF, Sriram S, Bush WS, Denny JC, Haines JL,. The clinical course of multiple sclerosis (MS) is highly variable, and research data collection is costly and time consuming. We evaluated natural language processing techniques applied to electronic medical records (EMR) to identify MS patients and the key clinical traits of their disease course.We used […]